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ABSTRACT: Predicting the timing and location of thunderstorms (‘‘convection’’) allows for preventive actions that can

save both lives and property.We have appliedU-nets, a deep-learning-based type of neural network, to forecast convection

on a grid at lead times up to 120min. The goal is to make skillful forecasts with only present and past satellite data as

predictors. Specifically, predictors are multispectral brightness-temperature images from the Himawari-8 satellite, while

targets (ground truth) are provided by weather radars in Taiwan. U-nets are becoming popular in atmospheric science due

to their advantages for gridded prediction. Furthermore, we use three novel approaches to advance U-nets in atmospheric

science. First, we compare three architectures—vanilla, temporal, and U-net11—and find that vanilla U-nets are best for

this task. Second, we train U-nets with the fractions skill score, which is spatially aware, as the loss function. Third, because

we do not have adequate ground truth over the full Himawari-8 domain, we train the U-nets with small radar-centered

patches, then apply trainedU-nets to the full domain.Also, we find that the best predictions are given byU-nets trainedwith

satellite data from multiple lag times, not only the present. We evaluate U-nets in detail—by time of day, month, and

geographic location—and compare them to persistence models. The U-nets outperform persistence at lead times$ 60min,

and at all lead times the U-nets provide a more realistic climatology than persistence. Our code is available publicly.
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1. Introduction

Thunderstorms (hereafter ‘‘convection’’) are a dangerous

weather phenomenon, causing economic losses, injury, and

death. Convection heavily impacts industries such as aviation,

outdoor events, and wind energy. In these and other activi-

ties, predicting the location and timing of convection, even at

short lead times, allows for preventive actions that mitigate

both human and economic losses (Wilson and Mueller 1993;

Mueller et al. 1993; Ahijevych et al. 2016). In Taiwan espe-

cially, hazards commonly associated with convection are flash

flooding and landslides, due to the country’s steep terrain,

high rainfall rates, and frequent earthquakes that weaken

slopes (Lin et al. 2017). Forecasting at lead times # 3 h is

often called nowcasting, and much work has been done on

nowcasting the location and timing of convection. Early work

used primarily radar data for this purpose, while more

recent work has used primarily satellite data, due to the in-

creased spatial and temporal resolution of geostationary

satellites over time. Also, satellites can detect thunderstorms

earlier in their development (i.e., before they develop enough

precipitation to produce a radar echo), and satellites cover a

much larger portion of the globe than do radars.

To our knowledge, Mueller andWilson (1989) developed

the first explicit convection-forecasting algorithm. They

used the radar at Denver International Airport (DIA) to

detect lines of boundary layer convergence, then used

properties of these lines to forecast the probability of radar

reflectivity . 30 dBZ at lead times up to 3 h. Wilson and

Mueller (1993) expanded on this work, forecasting con-

vection over an 8000-km2 area surrounding DIA, but at

lead times # 30 min. Neither study used satellite data, be-

cause at this time geostationary satellites had a temporal

resolution of 30 min, deemed too coarse to be useful

(Wilson and Mueller 1993). Mueller et al. (1993) investi-

gated the potential of high-resolution surface (10–15-km

spacing and 1-min time steps) and sounding (8 sites over

25 000 km2 and 1–6-h time steps) observations to forecast

convective initiation (CI), but they found that the high-

resolution data provide no skill beyond routine observa-

tions (25–50-km spacing for surface stations and one

morning sounding). This conclusion is important, as mod-

ern surface and sounding networks still do not have high

resolution as defined in Mueller et al. (1993). Mueller et al.

(1993) suggested that CI-forecasting could instead be im-

proved by using high-resolution satellite data.

To our knowledge, Roberts and Rutledge (2003) developed

the first explicit convection-forecasting algorithm based on sat-

ellite data. They forecast CI at lead times up to 1 h, primarily
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near DIA, and outperformed earlier methods. Mecikalski

and Bedka (2006, hereafter MB06) developed a CI-forecasting

algorithm called Satellite Convection Analysis and Tracking

(SATCAST). This expert system used eight ‘‘interest fields’’

(predictors), all based on infraredGOESdata, to forecast at lead

times up to 1 h. SATCAST improved upon earlier work by using

multispectral infrared data, including band differences (e.g.,

13.3-mm minus 10.7-mm brightness temperature) and temporal

changes thereof. MB06 is still a highly influential study, as the

interest fields developed therein have been used extensively

since. Mecikalski et al. (2008) provided an objective evaluation

of SATCAST, finding that it had a very high probability of de-

tection (POD; 0.99) but also a very high false-alarm ratio1 (FAR;

0.72).Mecikalski et al. (2008) is also a highly influential study, as

it established that CI-forecasting algorithms tend to have a high

FAR, which much work since has focused on reducing.

Sieglaff et al. (2011) developed the University of Wisconsin

Convective Initiation (UWCI) algorithm, which forecast CI at

lead times up to 1 h. The UWCI improved upon earlier methods

by using a box-averaging approach, rather than explicit cumulus-

tracking, to compute temporal changes in infrared brightness

temperature. Explicit tracking, as in SATCAST, was error-

prone at the time, due partly to the long time interval (15min for

GOES) between consecutive satellite images. Otherwise, the

UWCI was similar to previous algorithms such as the Auto-

nowcast System (Mueller et al. 2003) and SATCAST – an expert

system based on infrared data. Walker et al. (2012) devel-

oped SATCASTv2, which improved upon the UWCI by

reintroducing explicit cumulus-tracking. Despite its advan-

tages, SATCASTv2 was a daytime-only algorithm with high

FAR — e.g., 0.55 in the central United States, where it

performed best overall. Mecikalski et al. (2015) developed

the GOES-R CI algorithm, which had two advantages over

earlier methods. First, it used machine learning (ML; spe-

cifically logistic regression or a random forest), allowing for

probabilistic, rather than binary, forecasts. Second, the

predictors included NWP data [from the Rapid Refresh

(RAP) model], allowing for a dramatic decrease in FAR.

Mecikalski et al. (2015) found that the two most important

predictors were surface-based and most unstable convective

inhibition (CIN), followed by surface-based and most un-

stable convective available potential energy (CAPE), all

derived from NWP.

Lee et al. (2017) developed a convection-forecasting algo-

rithm for the Himawari-8 satellite, which covers the western

Pacific and eastern Asia. They used random forests with

12 infrared-based interest fields as predictors, similar to those

used in SATCAST. Han et al. (2019) expanded on this work by

using a procedure to iteratively expand the training set for the

random forest — at each step, adding cases similar to those that

the random forest predicts poorly. Although most of their

evaluation scores were worse than in Lee et al. (2017), the

random forest of Han et al. (2019) detected incipient convection

at an earlier stage of development and thus had a longer lead

time. Lee et al. (2021) developed a convolutional neural network

(CNN), a type of deep-learning method, to detect convection at

the present time. This followed previous work using deep

learning to forecast precipitation amount (Shi et al. 2015;

Sønderby et al. 2020). Other than the use of deep learning, a

major advantage of Lee et al. (2021) is that they defined con-

vection by a sophisticated echo-classification algorithm, which

incorporated more radar-measured information than a simple

reflectivity threshold.

We apply neural networks, an ML method, to forecast con-

vection at lead times up to 2 h. The predictors are a time series of

brightness-temperature grids from seven infrared bands on the

Himawari-8 satellite,2 and the output is a grid of convection

probabilities at the given lead time.3 The labels (treated as

correct answers) are produced by applying an echo-classification

algorithm to data from weather radars in Taiwan. Four charac-

teristics of our work make it unique from previous work. First,

we use U-nets (Ronneberger et al. 2015), which are similar to

CNNsbut better suited for pixelwise prediction (here, predicting

the convection probability at each grid point).U-nets are quickly

gaining popularity in atmospheric science (Chen et al. 2021;

Kumler-Bonfanti et al. 2020; Sadeghi et al. 2020; Sha et al. 2020a,

b; Lagerquist et al. 2021), and herein we use them for another

pixelwise prediction task, to forecast convection on a grid.

Second, we experiment with two novel U-net architectures—the

temporal U-net and U-net11—as well as the vanilla U-net.

Third, we use a sliding-window approach, allowing us to train

U-nets with small patches of the full grid (those with adequate

radar coverage to create labels), then apply U-nets to the full

grid at inference time. Fourth, we use a spatially aware function,

called the fractions skill score (FSS; Roberts and Lean 2008), as

the loss function. The FSS does not unduly punish small offsets

between forecast and observed convection; it has been used

widely in atmospheric science (Mittermaier 2021), but to our

TABLE 1. Characteristics of Himawari-8 spectral bands used to

create predictors. All bands listed have a spatiotemporal resolution

of 10min and 2 km.

Band No. Central wavelength (mm) Bandwidth (mm)

8 6.25 0.37

9 6.95 0.12

10 7.35 0.17

11 8.60 0.32

13 10.45 0.30

14 11.20 0.20

16 13.30 0.20

1 Not to be confused with false-alarm rate, often called the

probability of false detection (POFD). POFD is b/(b 1 d), and

FAR is b/(a 1 b), where a is the number of true positives, b is the

number of false positives, and d is the number of true negatives.

2 The goal is to obtain skillful forecasts with only satellite-based

predictors, per request of the Taiwan Central Weather Bureau, the

direct beneficiaries of this project.
3 Technically, a classification model outputs confidence scores

rather than calibrated probabilities. However, for the sake of

convenience, we refer to the confidence scores, which range con-

tinuously from [0, 1], as probabilities.
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knowledge it has been used only for post hoc evaluation, never

as the loss function for training a model.

The rest of this paper is organized as follows. Section 2 de-

scribes the input data and preprocessing; section 3 describes the

U-net architectures attempted; section 4 details the ML meth-

odology; Sections 5 and 6 evaluate and interpret the final U-net

models; and section 7 provides a summary and list of future work.

2. Input data

a. Data description

The predictors come fromHimawari-8 satellite data, provided

by the Taiwan Central Weather Bureau (CWB) at 10-min

time steps for 3 years: 2016–18. The data consist of gridded

radiance maps for seven spectral bands, listed in Table 1.

FIG. 1. Input data valid at 1800 UTC 3 Jun 2017. (a)–(g) Brightness temperature (K) in each spectral band, used as predictors; see the

color bar below (g). Composite (column-maximum) radar reflectivity (h) with and (i) without echo classification. The black dots in (i) show

grid points with convection, according to SL3D (section 2c).

DECEMBER 2021 LAGERQU I S T ET AL . 3899

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:59 PM UTC



The weighting function for each band is shown in Fig. 1 of

Da (2015). All seven bands are in the infrared part of the

spectrum, so the same data can be used during both day

and night. We convert the radiances to brightness temper-

atures, using lookup tables provided by the CWB. Because

brightness temperature has traditionally been used to forecast

convection (section 1), we find that it is more interpretable

than radiance. The satellite data are provided on a grid span-

ning 18–298N, 115–126.58E with 0.01258 spacing, as shown in

Figs. 1a–g.

The labels come from radar data (Figs. 1h–i), also provided

by the CWB at 10-min time steps for the years 2016–18. The

files provided contain reflectivity on a 3D grid created by the

CWB, who interpolated data from the four weather radars

in Taiwan (Chang et al. 2009), all S-band (10-cm wavelength),

to a common grid. The radar domain is a subset of the sat-

ellite domain: 208–278N, 1188–123.58E, also with 0.01258
spacing. Heights in the grid range from 0 to 17 km above sea

level (MSL), with 0.5-km spacing up to 5 km MSL and 1-km

spacing aloft.

Both the satellite and radar data have 10-min time steps, and

we make a prediction for each time step. The training, vali-

dation, and testing data are split by year as shown in Table 2.

With no missing data, there would be 51 696 examples in the

training period (359 days 3 144 time steps per day, 51 552 ex-

amples in the validation period (358 days), and 52 560 exam-

ples in the testing period. However, at each initial time t0, we

make predictions only if:

(i) The satellite data, used as predictors, are available at all

required lag times (e.g., t0, t0 2 10min, and t0 2 20min);

(ii) The radar data, used as labels, are available at the required

lead time (e.g., t0 1 60min).

Thus, the number of available examples depends on the

lag times and lead time required by the U-net. In general,

U-nets with more lag times have fewer available examples

(with more lag times, there is a greater chance that at least

one lag time is missing). Typically, the number of available

examples is ;90% of the possible total. For instance, for a

U-net with lag times of {0, 20, 40} and lead time of 60min,

the number of available examples is 45 945 for the validation

data (89.1% of possible) and 48 774 for the testing data

(92.8% of possible).

b. Preprocessing of satellite data

During this research, we discovered that linear arti-

facts are common in band 8 (wavelength of 6.25 mm). We

developed a quality-control algorithm to remove these

artifacts, described below for one time step. See Fig. S1 in

the online supplemental material for an example of the

result.

1) Create a map of smoothed brightness temperatures, using a

5 3 5 mean filter. Let raw and smoothed brightness tem-

perature be Tb and T 0b, respectively.
2) At each grid point, compute the absolute difference:

DTb 5 jTb 2T 0bj. A grid point with large DTb varies strongly

from its neighbors.

3) Dilate the DTb map, using a 5 3 5 maximum filter and

letting the result be gDTb. The purpose is to fill ‘‘holes’’

(grid points with small DTb surrounded by neighbors with

large DTb).

4) Find connected regions4 of at least 1000 grid points where
gDTb . 1K. Call these ‘‘flagged regions’’; they do not natu-

rally occur without erroneous data.

5) At each grid point in a flagged region, replace Tb with the

linearly interpolated Tb from grid points outside all flagged

regions.

Due to the dilation in step 3, flagged regions con-

tain both erroneous and some nonerroneous grid points.

However, we find this trade-off acceptable, because if

linear artifacts are not removed the U-nets almost always

interpret the associated large temperature gradients as

convection.

c. Preprocessing of radar data

To create convection masks (labels), we apply an echo-

classification algorithm to the radar data. The algorithm is

called Storm-labeling in 3 Dimensions (SL3D; Starzec

et al. 2017) and labels each horizontal grid location

as convective or nonconvective. For example, in Fig. 1i

each convective location is marked with a black dot.

Lagerquist et al. (2020) modified SL3D for tornado pre-

diction, as described in their supplemental material. We

have made one more modification to the version described

in Lagerquist et al. (2020): each convective grid point must

be in a connected region of $10 convective grid points. To

achieve this, we have added a final step called the region

filter: for any convective grid point not in a connected region

of $10 convective grid points, we change the label to non-

convective. We have found the region filter necessary to

remove areas of high-reflectivity but nonmeteorological

echoes (e.g., ground clutter), which tend to be larger in the

Taiwan data than in the U.S. data for which SL3D was

originally developed. The disadvantage of the region filter is

that it removes early- and late-stage thunderstorms, in

which ,10 grid points meet the other SL3D criteria. On the

radar grid used, a connected region of,10 grid points has an

area no greater than 16.34 km2.

TABLE 2. Training, validation, and testing data. Valid time is the

time at which the prediction is valid. For example, if the forecast-

issue time is 1100 UTC and the lead time is 60min, the valid time is

1200 UTC. There is a 1-week gap between each pair of consecutive

datasets to eliminate temporal autocorrelation and ensure that the

three sets are truly independent.

Dataset Valid times

Training 1 Jan–24 Dec 2016

Validation 1 Jan–24 Dec 2017

Testing 1 Jan–31 Dec 2018

4A connected region is a set R of grid cells, such that each grid

cell in R shares an edge or corner with another grid cell in R.
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3. U-net architectures

a. Background on U-nets

A traditional neural network, or fully connected neural net-

work (FCNN; chapter 6 of Goodfellow et al. 2016), contains

several layers of neurons. Each neuron performs its own linear

regression, with weights learned during training, and each layer

of neurons is followed by a nonlinear activation function, such as

the hyperbolic tangent or sigmoid. The main disadvantage of

FCNNs is that they treat all predictors as independent scalars,

making them unable to exploit spatial and temporal struc-

ture. Convolutional neural networks (CNN; Fukushima

1980; Fukushima and Miyake 1982) use convolutional filters

to detect spatial and temporal features in gridded data, thus

overcoming the disadvantage of FCNNs. U-nets (Ronneberger

et al. 2015) retain this advantage of CNNs and also excel at

pixelwise prediction—i.e., making a prediction at every grid

point—due to their use of skip connections, discussed in

section 3b. We experiment with three U-net architectures,

explained briefly below and in detail in the original papers.

b. Vanilla U-net

A vanilla U-net (Ronneberger et al. 2015) contains four types of

components, shown in Fig. 2: convolutional layers, pooling (down-

sampling) layers, upsampling layers, and skip connections. The left

side of the U-shape is the downsampling side, where spatial5

resolution decreases with depth, and the right side is the up-

sampling side, where spatial resolution increases with depth.

The convolutional layers detect spatial features, and the other

components allow different convolutional layers to detect

features at different resolutions. This is crucial for weather

prediction, due to the multiscale nature of weather phenomena.

Inputs to the first layer are raw predictors, and inputs to deeper

layers6 are transformed versions of the raw predictors, called

feature maps. Convolution is both a spatial and multivariate

transformation, so the feature maps encode spatial patterns that

include all predictor variables. In a CNN or U-net, a nonlinear

activation function comes after each convolutional layer. The

inner workings of a convolutional layer are animated in

supplemental Fig. S1 of Lagerquist et al. (2020).

Each pooling layer downsamples the feature maps to a

lower spatial resolution, typically using a 2 3 2 maximum

filter. Thus, on the downsampling side of Fig. 2, grid spacing

increases from 0.01258 to 0.0258, 0.058, 0.18, 0.28, and finally

0.48 at the bottom. As the spatial resolution decreases, the

number of feature maps (‘‘channels’’) typically increases, to

offset the loss of spatial information. The inner workings

of a pooling layer are animated in supplemental Fig. S2 of

Lagerquist et al. (2020).

Each upsampling layer upsamples the feature maps to a

higher spatial resolution, using interpolation followed by

convolution. The convolution is crucial because interpolation

alone cannot adequately reconstruct high-resolution informa-

tion from low-resolution information. As the spatial resolution

FIG. 2. Architecture of vanilla U-net with two lag times for predictors. The left side of the

U-shape is the downsampling side; the right side is the upsampling side; and depth in-

creases from the input layer in the top-left corner to the output layer in the top-right

corner. In each set of feature maps, the numbers are dimensions (rows 3 columns 3
channels). The 14 input channels are the predictor variables—i.e., brightness-temperature

maps from 7 spectral bands at 2 lag times. Spatial-convolution filters have dimensions of

3 rows 3 3 columns; pointwise-convolution filters have dimensions of 1 row 3 1 column;

while pooling and upsampling windows have dimensions of 2 rows 3 2 columns. For each

set of feature maps with two incoming arrows (upsampling and skip connection), there is an

extra convolutional layer (with 3 3 3 filters) that reduces the number of channels. For

example, stacking the feature maps A with the upsampled version of feature maps B results

in 481 64 5 112 channels. The extra convolutional layer here transforms the 112 channels

to the 64 channels in C.

5 For U-nets that perform spatiotemporal convolution, replace

‘‘spatial’’ with ‘‘spatiotemporal’’ in this and the next three para-

graphs. Our vanilla U-nets perform only spatial convolution for

reasons explained at the end of this subsection.

6 Depth increases while traveling from the input layer, at the top

left of the U, to the output layer, at the top right of the U.
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increases, the number of channels typically decreases, termi-

nating with the number of output channels (here, one: con-

vection probability).

Skip connections preserve high-resolution information

from the downsampling side and carry it to the upsampling

side. Without skip connections, the U-net would simply per-

form downsampling and then upsampling, which is a lossy

operation. On the upsampling (right) side of Fig. 2, each

feature-map set labeled with an asterisk (*) is formed by

concatenating feature maps from the upsampling layer below

and the skip connection to the left. Although both incoming

feature-map sets have the same nominal spatial resolution,

those from the skip connection have a higher effective reso-

lution, because less information therein has been lost by

downsampling. Feature maps from the upsampling layer have

two advantages: (i) they contain higher-level abstractions,

because they have passed through more convolutions and

nonlinear activations; (ii) they contain wider spatial context,

because they are upsampled from coarser resolution.

In the vanilla architecture, we concatenate predictors

(brightness-temperature maps) from different lag times

along the channel dimension, so different spectral channels and

different lag times are treated equivalently. In principle, it is

possible to reserve one dimension for lag times and one for

spectral channels (so the inputs in Fig. 2 would be 2053 2053
2 3 7, rather than 205 3 205 3 14), then perform spatiotem-

poral convolution rather than spatial convolution. However,

spatiotemporal convolution is computationally expensive

(i.e., 3D convolution is much more expensive than 2D con-

volution), and in our experience with past projects, it does

not lead to better performance.

c. U-net11

A U-net11 (Zhou et al. 2019) contains more skip connec-

tions than a vanilla U-net, allowing features frommore than two

spatial scales to be combined at each level (Fig. 3). For example,

the feature-map set labeled D in Fig. 3 is formed by concate-

nating A, B, and the upsampled version of C. Although the

feature maps all have a nominal resolution of 0.18, their effective
resolutions, due to downsampling, are 0.18, 0.28, and 0.48, re-
spectively. By having more skip connections, the U-net11 al-

lows information to flowalong themost useful paths, causing it to

outperform the vanilla U-net for some tasks (Zhou et al. 2019).

In the U-net11 architecture, as in the vanilla architecture,

channels and lag times are treated equivalently.

d. Temporal U-net

AtemporalU-net (Chiu et al. 2020) is similar to a vanillaU-net,

except that it processes each lag time independently on the

downsampling side (left in Fig. 4), then combines features from

the different lag times via spatiotemporal convolution (middle of

Fig. 4). The spatiotemporal-convolution layers are called the

‘‘temporal forecasting module’’ in Chiu et al. (2020). Thus, the

temporal U-net, unlike the vanilla and U-net11 architec-

tures, treats channels and lag times differently. Chiu et al.

(2020) found that this ability allows the temporal U-net to

FIG. 3. Architecture of U-net11 with two lag times for predictors. Each ‘‘downsampling’’

arrow corresponds to a pooling layer followed by two convolutional layers, as in one row of the

downsampling side in Fig. 2. Each ‘‘upsampling’’ arrow corresponds to an upsampling layer

followed by two convolutional layers, as in one row of the upsampling side in Fig. 2. For each set

of feature maps with multiple incoming arrows (upsampling and skip connections), there is an

extra convolutional layer (with 33 3 filters) that reduces the number of channels. For example,

stacking the featuremapsAwithB and the upsampled version of featuremapsC results in 481
481 645 160 channels. The extra convolutional layer here transforms the 160 channels to the

64 channels in D.

3902 MONTHLY WEATHER REV IEW VOLUME 149

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:59 PM UTC



outperform the vanilla U-net, and we hypothesize that for

our task, said ability will allow the temporal U-net to out-

perform both the vanilla and U-net11 architectures.

4. Machine-learning methodology

This section describes our ML methodology, other than

the tuning of hyperparameters, which is discussed in the sup-

plemental material. Hyperparameters are model settings not

optimized by training, such as the U-net architecture and

lag times for predictors, which are two of the four hyper-

parameters that we tune. We split the data into training, vali-

dation, and testing sets (Table 2), using only the validation set to

tune hyperparameters. We use multiple scores to select the best

model at each lead time, as discussed in the supplemental ma-

terial. The main results of hyperparameter-tuning are (i) the

vanilla U-net is the best architecture, contrary to our stated

hypothesis in section 3d; (ii) regardless of lead time, the best

performance is achieved with multiple lag times for predictors.

In other words, the temporal evolution of satellite images is

important as expected, but surprisingly, the best U-net archi-

tecture is the simplest. In an earlier experiment (not shown),

before omitting the northernmost radar (for reasons explained

in section 4a), we found that the vanilla U-net was the worst

architecture, based on validation data. This suggests that the

more complex architectures (temporal and U-net11) fit sys-

tematic errors from the northernmost radar more strongly.

a. Training with patches

We train each U-net with small radar-centered patches,

rather than the full grid. This avoids issues with limited radar

coverage and memory constraints.7 As shown in Fig. 5a, where

distance from the nearest radar (dnr) .100 km, artifacts in

convection frequency are more severe than where dnr # 100km.

Also, we have found that data from the northernmost radar

(located at the northern tip of Taiwan, not circled in Fig. 5a)

contain a large number of severe errors, so we do not use data

from this radar. The radar-centered patches have a complete

domain of 205 3 205 grid points (2.56258 3 2.56258) and inner

domain of 105 3 105 grid points (1.31258 3 1.31258), as shown
in Fig. 5b. Each U-net reads predictors from the complete

domain (to avoid edge effects) but makes predictions only for

the inner domain, where there is adequate radar coverage.

b. Inference with sliding windows

At inference time (i.e., when using a trainedU-net to predict the

full grid), we use the sliding-window approach shown in Fig. 5c,

similar to Liu et al. (2018). Specifically, we slide the 205 3 205

window by 25 grid points at a time, leading to a large overlap be-

tween adjacent inner windows. We apply the U-net to each win-

dow, ignoring predictions (convection probabilities) in the outer

domain.Due to the large overlap between adjacent innerwindows,

most grid points receive more than one prediction. At these grid

points we average all the predictions. Despite this averaging, there

are sometimes sharp gradients in the probability map. To remove

sharp gradients, we apply a Gaussian smoother to the final

probability map, with an e-folding radius of two grid points.

c. Loss function

The loss function, used to optimize U-net weights during

training, is the fractions skill score (FSS; Roberts and Lean

2008). For one example (i.e., the actual and forecast convection

at one time step), the FSS is defined as

FSS5 12
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where pij is the filtered forecast probability at grid point (i, j); yij
is the filtered observation at grid point (i, j); and M and N are

the number of rows and columns in the grid, respectively. For a

batch of several examples, the FSS is defined as the average of

Eq. (1) over all examples. Filtering is accomplished by taking

the average over a window of 93 9 grid points, corresponding

to a neighborhood width of 4 grid points (0.058 or ;5 km).

Thus, the U-net is punished only when there is a mismatch of

more than ;5 km between actual and predicted convection;

this threshold was identified in discussions with the Taiwan

CWB. We did not experiment with other neighborhood

widths for the FSS. Filtering makes the FSS spatially aware

FIG. 4. Architecture of temporal U-net with lag times of 0 and

10min for predictors. As in Fig. 2, the left side of the U-shape is the

downsampling side; the right side is the upsampling side; and depth

increases from the input layer in the top-left corner to the output

layer in the top-right corner. At each lag time, the 7 channels cor-

respond to the 7 spectral bands of the satellite. As in Figs. 2 and 3 for

each set of feature maps with two incoming arrows (upsampling and

skip connection), there is an extra convolutional layer (with 3 3 3

filters) that reduces the number of channels.

7When training with the full grid, we cannot use batches of more

than;8 examples; batches this small lead to instability and overfitting.
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and avoids the double-penalty problem, where the model is

unduly punished for a small spatial offset between actual and

forecast convection (Gilleland et al. 2009). The FSS ranges

from [0, 1], and higher values are better. Although the FSS

has been used widely in atmospheric science (Weusthoff et al.

2010; Sobash et al. 2011; Mittermaier et al. 2013; Bachmann

et al. 2018; Ahmed et al. 2019; Loken et al. 2019; Qian and

Wang 2021), it is typically used to evaluate the model post

hoc, after training with a pointwise loss function. This

establishes a disconnect between themodel evaluation during

and after training—i.e., the model is trained to optimize

pointwise performance but is evaluated on spatial perfor-

mance. To our knowledge, only two other studies in atmo-

spheric science use a spatially aware evaluation score, though

not the FSS, directly as the loss function (Heim and Avery

2019; Stengel et al. 2020).

d. Model evaluation

To evaluate probabilistic forecasts, we use the FSS [Eq.

(1)] and attributes diagram (Hsu and Murphy 1986).

Although the FSS is spatially aware by default, the attri-

butes diagram–which is a reliability curve with extra ref-

erence lines in the background—typically is not. Thus, we

redefine the reliability curve, using a neighborhood radius

rn to match forecast convection to actual convection.8 A

classic reliability curve plots forecast probability versus

conditional event frequency—in this case, the frequency of

actual convection given each forecast probability—and for a

gridded problem the matching is pixelwise. In our reliability

curves, we match each forecast convective grid point with ac-

tual convective grid points over a radius of rn. Thus, for each

forecast probability, the conditional event frequency is de-

fined as the fraction of cases where at least one actual con-

vective grid point occurs within rn of the forecast. We

compute the Brier score (BS) and Brier skill score (BSS) from

FIG. 5. Climatology and masking. (a) Climatology

(i.e., convection frequency over the full dataset), based

on SL3D. Brown circles correspond to the mask in (b).

(b) Mask used for model evaluation. Grid points with

distance to the nearest radar (dnr)# 100 km (green) are

used for evaluation, and grid points with dnr . 100 km

(white) are not. Each example fed to a U-net is radar-

centered, with a complete domain (orange box) of

2053 205 grid points and inner domain (purple box) of

105 3 105 grid points. These domains are shown only

for the southernmost radar. (c) The sliding-window ap-

proach, used at inference time to predict over the full

grid. Only the first five positions of the complete domain

(orange) and inner domain (purple) are shown.Adjacent

windows overlap because the stride length is only 25 grid

points.

8 For all scores defined in this section, if the central grid pointP is

within neighborhood radius rn of a masked grid point (white in

Fig. 5b), point P is ignored and not used to compute the score.
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the reliability curve, as in Hsu and Murphy (1986), so both

scores incorporate the neighborhood radius and are

spatially aware.

As mentioned in section 3c, the FSS ranges from [0, 1] and

higher is better. The BS, which is the mean squared error for

binary classification, ranges from [0, 1], and lower is better.

The BSS, which compares the actual and climatological BS,9

is defined as (BSclimo 2 BS)/BSclimo. Like any true skill score,

the BSS ranges from (2‘, 1]; higher values are better; and

positive values signal an improvement over climatology.

To evaluate binary forecasts, we use the contingency ta-

ble. To convert probabilistic forecasts to binary, we use a

probability threshold, which is not necessarily 0.5. The four

scores are probability of detection (POD), false-alarm ratio

(FAR), frequency bias, and critical success index (CSI).

The contingency tables in this work do not include correct

nulls, because we match only convective grid points (pre-

dicted to actual and vice versa), so correct nulls are ill-

defined. This is similar to the setting in which the National

Weather Service (NWS) evaluates tornado warnings: each

case is a segment of a tornado track, and there is no such

thing as a nontornado track, so there are no correct nulls.

From Brooks (2004), the NWS defines the four scores as in

Table 3. The variables used in Table 3 are defined sche-

matically in Fig. 6.

e. Persistence baseline

We compare each U-net to the persistence model with the

same lead time. Previous studies on convection-forecasting

have typically used persistence or extrapolation as a baseline.

We do not use extrapolation, because this requires complicated

tracking algorithms such as optical flow or atmospheric motion

vectors, which are computationally expensive and error-prone

on gridded data (e.g., Héas et al. 2007). All persistence models

assume that the convection mask will remain the same forever,

regardless of lead time. However, we have found that

Gaussian-smoothing the convection mask, with an e-folding

radius of four grid points, leads to the best performance

for persistence models. While the original convection mask

contains only 0s and 1s, the smoothed mask contains values

ranging continuously from [0, 1], which are treated as a map

of forecast probabilities.

5. Model evaluation

Results of the hyperparameter experiments, used to choose

the best U-net at each lead time, are shown in the supplemental

material. Results in this section are for the selected U-nets

only, based on testing data (year 2018), and like the loss

function (section 4c), scores are computed with a four-grid-

point (0.058) neighborhood distance.

The attributes diagram (e.g., Fig. 7a)—invented by Hsu

and Murphy (1986)—shows a reliability curve, inset histo-

gram of forecast probabilities, and reference lines. The re-

liability curve plots conditional event frequency versus

forecast probability; it answers the question: ‘‘For each

forecast probability, how likely is convection to actually

occur?’’ To create the reliability curve, we split the testing

data into 20 bins: those with forecast probabilities of 0.00–

0.05, 0.05–0.10, etc. A perfect reliability curve follows the

diagonal gray line, where conditional event frequency equals

forecast probability. Meanwhile, the vertical gray line is the

climatology line; the horizontal gray line is the no-resolution

line; and the blue shading is the positive-skill area, where

BSS . 0, signaling an improvement over climatology. The

performance diagram (e.g., Fig. 7b)—invented by Roebber

(2009)—plots POD versus FAR, with each point corre-

sponding to one probability threshold. Because frequency

bias and CSI are both functions of POD and FAR (Table 3),

they can be overlaid. Curves closer to the top right, where

CSI is greater and frequency bias is closer to 1.0, are better.

At each lead time, to determine the best probability

threshold for binary forecasts, we use the performance di-

agram on validation data. We start by finding two thresh-

olds: that yielding the frequency bias closest to 1.0 (pFB* ) and

that yielding the highest CSI (pCSI* ). If the CSI at pFB* is at

least 90% of the CSI at pCSI* , we choose pFB* ; otherwise, we

TABLE 3. Evaluation scores for binary forecasts: rn is the neighborhood radius, aA is the number of actual-oriented true positives (actual

convective grid points for which there is forecast convection within rn), aF is the number of forecast-oriented true positives (forecast

convective grid points for which there is actual convection within rn), b is the number of false positives (forecast convective grid points for

which there is no actual convection within rn), and c is the number of false negatives (actual convective grid points for which there is no

forecast convection within rn).

Score Definition Range Optimal value

Probability of detection (POD) aA
aA 1 c

[0, 1] 1

False-alarm ratio (FAR) b

aF 1 b

[0, 1] 0

Frequency bias POD

12 FAR

[0, ‘) 1

Critical success index (CSI) POD21 1 (1 2 FAR)21 2 1 [0, 1] 1

9 The BS that would be achieved by a climatological model,

where forecast probability is always the event frequency in the

training data. Climatological frequency increaseswith rn, because it

is the fraction of grid points P for which there is convection within

rn of P.
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choose pCSI* . This choice is based on the validation data, and

we use the same threshold for the testing data. Thus, we

treat the probability threshold as a hyperparameter.

a. 0-min lead time

Figure 7 shows domain-averaged scores for the selected

U-net, which uses predictors at lag times of 0, 10, and

20min.10 Observations from Fig. 7 are noted here and sum-

marized in Table 4. The attributes diagram (Fig. 7a) shows

that the U-net is underconfident for probabilities & 0.85

and overconfident for probabilities * 0.85. However, the

reliability curve is almost entirely inside the positive-skill

area, meaning that the U-net is more skillful than a climato-

logical model at almost all probabilities. Also, the distance

from the perfect line (i.e., difference between forecast prob-

ability and conditional event frequency) is ,0.2 everywhere.

In our experience this is impressive reliability for a rare event

(e.g., Fig. 5 of Gagne et al. 2015, Fig. 9 of Gagne et al. 2017,

Fig. 10f of Lagerquist et al. 2017, Fig. 6 of Burke et al. 2020),

especially at the higher probabilities, which are rarely fore-

cast (see inset histogram). The performance diagram (Fig. 7b)

shows that the best probability threshold is 0.2, yielding a CSI

of 0.375 and frequency bias of 0.893. In the monthly perfor-

mance diagrams (Fig. 7c), the U-net performs best in the

spring (March–May) and worst in December–January. Based

on visual inspection of individual cases (not shown), we

conclude that poor performance in December–January is

due to a low POD, caused by the U-net missing marginal

FIG. 6. Model evaluationwith a neighborhood radius of four grid points. In each panel, the green (orange) box is a grid

point with actual (predicted) convection. (a),(b) The actual convective grid point (A) is matched to the nearest predicted

convective grid point (P). In (a), P is within four grid points of A; in (b), it is not. (c),(d) The predicted convective grid

point (P) ismatched to the nearest actual convective grid point (A). In (c),A is within four grid points ofP; in (d), it is not.

10 Note that the task at 0-min lead time is detection, not pre-

diction. Nonetheless, for the sake of convenience, we use the term

‘‘prediction’’ throughout to describe model estimates at zero and

nonzero lead times.
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convection—i.e., weak storms that barely meet the SL3D

criteria for convection. Also based on visual inspection, we

believe that good performance in the spring is due to thun-

derstorms being more discrete; discrete storms are less often

obscured from the satellite by high cirrus and anvil clouds

from neighboring storms. In the hourly performance dia-

grams (Fig. 7d), the U-net performs best from 1300 to 1759

Taipei standard time (TST) and worst from 1000 to 1159 TST.

In other words, the U-net performs better when convection is

more frequent (see histogram in Fig. 7h). This is unsurprising,

as the performance diagram is generally worse for rare events

(explained in section 5 of Lagerquist et al. 2020).

In themonthly reliability curves11 (Fig. 7e), theU-net performs

best in June, August, and December–January; in other months it

is underconfident at nearly all probabilities. In the hourly

FIG. 7. Domain-averaged scores for selected 0-min U-net. (a),(b),(g),(h) The line shows the mean, and the shaded area shows the 95%

confidence interval, determined by bootstrapping with 1000 replicates. (a) Attributes diagram. (b) Performance diagram. The dashed gray

lines show frequency bias, and the blue color fill shows CSI. The star shows the best probability threshold (0.2), determined by considering

both frequency bias andCSI. Performance diagrams split by (c)month and (d) hour. The hour is in Taipei standard time, which is 8 h ahead

of UTC. Reliability curves split by (e) month and (f) hour. Other scores split by (g) month and (h) hour. For scores based on binary

forecasts (frequency bias and CSI), we use a probability threshold of 0.2, corresponding to the star in (b).

11 The full attributes diagram is not shown, because the reference

lines, which depend on climatology, would be different for

every month.
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reliability curves (Fig. 7f), the U-net performs best from 1000 to

1159 TST and worst from 1300 to 1759 TST. In general, based on

Figs. 7c–f, reliability is best when the performance diagram is

worst, illustrating a trade-off between the quality of probabilistic

and binary predictions. As noted in Table 4, this trade-off exists

only for the 0- and 30-min lead times, not for longer lead times.

Figures 7g–h show scalar scores by month and hour, which are

generally best from April to October and in the afternoon,

worst from November to March and in the late morning. In

other words, the three scores support the conclusion from the

performance diagrams, that performance is better when con-

vection is more frequent. However, two of the three scores

(CSI and frequency bias) are redundant with the performance

diagram.

Figure 8 shows gridded scores for the selected U-net. In

Figs. 8a,f the optimal value is 1.0 and the scores nearest 1.0

generally occur along the west side of the mountains, where

convection is frequent due to orographic lifting. Figures 8a–f

show many arc-shaped artifacts due to radar coverage (espe-

cially around the northernmost radar), as well as Fig. 8g, which

shows the label-based climatology (convection frequency ac-

cording to SL3D). However, in the model-based climatology

(mean convection probability from the U-net; Fig. 8h), these

artifacts are absent. According to the U-net, the climatological

maxima occur along the west side of the mountains and over

warm sea surface temperatures (SST) near the south of Taiwan,

while the minima occur over cool SSTs near the north of

Taiwan.12 Thus, we consider the model-based climatology more

plausible than the label-based climatology. This is an advantage

of the U-net over SL3D, although the advantage is subjective

and not quantifiable in an evaluation score.

b. 30-min lead time

Figure 9 shows domain-averaged scores for the selected

U-net, which uses predictors at lag times of 0, 20, 40, and

60min. Table 4 summarizes differences between domain-

averaged scores for the 0- and 30-min U-nets. One difference

is that frequency bias for the 30-min U-net is worst in the

afternoon (Fig. 9h), when FSS and CSI are best. This prob-

lem, as well as poor frequency bias in the winter months

(Fig. 9g), could be alleviated by choosing a different proba-

bility threshold for each month/hour. For research purposes

TABLE 4. Summary of domain-averaged scores for selected U-net at each lead time. ‘‘AD’’ is attributes diagram, ‘‘PD’’ is performance

diagram, ‘‘RC’’ is reliability curve, and ‘‘SS’’ is scalar scores.

Lead time Evaluation method Summary

0min AD (Fig. 7a) The bad: underconfident for probabilities &0.85 and overconfident for probabilities *0.85; the

good: reliability curve inside positive-skill area, within 0.2 of perfect line

PD (Fig. 7b) Best probability threshold is 0.2, giving CSI of 0.375 and frequency bias of 0.893

PD by time (Figs. 7c,d) Performs best in the spring (Mar–May) and afternoon (1300–1759 TST), worst in the winter (Dec–

Jan) and late morning (1000–1159 TST)

RC by time (Figs. 7e,f) Performs best in the summer (Jun, Aug), winter (Dec–Jan), and late morning (1000–1159 TST);

worst in the afternoon (1300–1759 TST); opposite of trends in PD by time

SS by time (Figs. 7g,h) Performs best in the extended summer (Apr–Oct) and afternoon, worst in the extended winter

(Nov–Mar) and late morning (1000–1159 TST); similar to PD by time

30min AD (Fig. 9a) Similar to 0-min U-net

PD (Fig. 9b) Best threshold 5 0.15; CSI 5 0.308; frequency bias 5 1.01

PD by time (Figs. 9c,d) Similar to 0-min U-net

RC by time (Figs. 9e,f) Similar to 0-min U-net

SS by time (Figs. 9g,h) Similar to 0-min U-net, except bias is worst in the afternoon (see main text)

60min AD (Fig. 10a) Reliability nearly perfect at all probabilities

PD (Fig. 10b) Best threshold 5 0.2; CSI 5 0.215; frequency bias 5 1.05

PD by time (Figs. 10c,d) Similar to 0-min U-net

RC by time (Figs. 10e,f) Performs best in the extended summer (May–Oct) and afternoon (blue in Fig. 10f), worst in the

winter (Nov–Jan); similar to trends in PD by time for 60-min U-net; however, for 0- and 30-min

U-nets, trends in PD by time and RC by time were opposite; thus, at 60min (and also beyond),

there is no longer a trade-off between reliable probabilities and good binary forecasts

SS by time (Figs. 10g,h) Similar to 0-min U-net

120min AD (Fig. 13a) Reliability curve inside positive-skill area, within 0.1 of perfect line

PD (Fig. 13b) Best threshold 5 0.15; CSI 5 0.156; frequency bias 5 1.43

PD by time (Figs. 13c,d) Performs best in the extended summer (Apr–Oct) except May and afternoon (1300–1759 TST),

worst in the extended winter (Nov–Mar) and at all times of day except afternoon; similar to 0-

min U-net, except more months and hours with very poor performance

RC by time (Figs. 13e,f) Performs best in the summer (Jun–Sep) and late afternoon (1500–1859 TST), worst in the extended

winter (Nov–Apr) and at all times of day except late afternoon; similar to 60-min U-net, except

more months and hours with very poor performance

SS by time (Figs. 13g,h) Similar to 0-min U-net, except notably high frequency bias (see main text)

12 See Fig. 2 of Sun et al. (2019) for a climatology of SST in

the area.
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FIG. 8. Gridded scores for selected 0-min U-net. (c)–(f) For scores based on bi-

nary forecasts, we use a probability threshold of 0.2, corresponding to the star

in Fig. 7b.
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this would add a lot of hyperparameters, so we have chosen

to keep one probability threshold per model. However, in an

operational setting where binary forecasts are required,

varying the probability threshold by month/hour would be

useful. In such a setting we would also consider the disparate

cost of false positives versus negatives (i.e., false negatives are

more costly, as failing to take preventive action for a thun-

derstorm hazard could be fatal) in choosing the probability

threshold.

Differences between the 30-min U-net and persistence

model are discussed in section c of the supplemental material.

The main conclusion is that, although the persistence model

outperforms theU-net on all objective scores, theU-net produces

a more plausible spatial climatology (i.e., gridded map of

convection frequency).

c. 60-min lead time

Figure 10 shows domain-averaged scores for the selected

U-net, which uses predictors at lag times of 0, 20, and 40min.

Table 4 summarizes differences between domain-averaged

scores for the 0- and 60-min U-nets; observations not in-

cluded in Table 4 are noted here. Reliability curves for

November–January are truncated (Fig. 10e), because the

U-net never forecasts probabilities .0.5 in these months.

In the hourly reliability curves (Fig. 10f), outside of the af-

ternoon (blue), the U-net is generally unreliable (either

FIG. 9. Domain-averaged scores for selected 30-min U-net. Formatting is explained in the caption of Fig. 7. (g),(h) For scores based on

binary forecasts (frequency bias and CSI), we use a probability threshold of 0.15, corresponding to the star in (b).
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overconfident or underconfident) when forecasting probabilities

* 0.4. Thus, the overall reliability curve (Fig. 10a) does not tell

the complete story, obscuring problems that occur for certain

months and hours, generally those with the least convection.

Figure 11 shows domain-averaged scores for the persis-

tence model, to be compared with Fig. 10 for the U-net. In

the attributes diagram (Fig. 11a), the persistence model

clearly has a worse BS and BSS, worse underconfidence

at low probabilities, and worse overconfidence at high

probabilities. However, the persistence model has a slightly

better performance diagram (Fig. 11b), with a CSI 0.021

higher. In the monthly and hourly performance diagrams

(Figs. 11c,d), again the two models are similar; the persistence

model is better only for the worst months, November–January.

In the monthly and hourly reliability curves (Figs. 11e,f), the

persistence model has worse underconfidence at low probabili-

ties andworse overconfidence at high probabilities, similar to the

overall attributes diagram. In the monthly and hourly plots of

scalar scores (Figs. 11g,h), the U-net generally has a better FSS;

the persistence model generally has a better CSI; and the

persistence model generally has a much better frequency

bias, especially for the worst months and hours.

Meanwhile, Fig. 12 shows gridded scores for the two 60-min

models. Evaluation scores (Figs. 12a–f) for the two 60-min

models are close, but as for the 30-min models (discussed

in section c of the supplemental material), the U-net-based

FIG. 10. Domain-averaged scores for selected 60-min U-net. Formatting is explained in the caption of Fig. 7. (g),(h) For scores based on

binary forecasts (frequency bias and CSI), we use a probability threshold of 0.2, corresponding to the star in (b).
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climatology is more plausible than the persistence-based clima-

tology (Figs. 12g,h). Specifically, the persistence-based clima-

tology contains many radar artifacts, because the persistence

model mimics the convection mask derived from radar data.

This subjective advantage is difficult to quantify when the la-

bels used for evaluation (Fig. 8g) are imperfect.

Overall, based on much better reliability and a more plau-

sible climatology, we conclude that the 60-min U-net is better

than the 60-min persistence model.

d. Longer lead times

Results for the 90-min models (U-net and persistence) are

relegated to supplemental Figs. S14–S16, because they are

very similar to those for the 60-min models. The two main dif-

ferences are (i) the 90-min models perform worse than the 60-min

models, although the 90-min U-net still has impressive overall

reliability (supplemental Fig. S14a); (ii) the advantage of theU-net

over the persistence model is greater at 90min than at 60min.

Figure 13 shows domain-averaged scores for the se-

lected 120-min U-net, which uses predictors at lag times of

0 and 20 min. Table 4 summarizes differences between

domain-averaged scores for the 0- and 120-min U-nets.

One difference is that in the monthly and hourly plots of

scalar scores (Figs. 13g,h), frequency bias is notably high

(near 2.0) when FSS and CSI are best, unlike for other lead

times. This is because the chosen probability threshold, based on

FIG. 11. Domain-averaged scores for 60-min persistencemodel. Formatting is explained in the caption of Fig. 7. (g),(h) For scores based on

binary forecasts (frequency bias and CSI), we use a probability threshold of 0.25, corresponding to the star in (b).
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FIG. 12. Gridded scores for selected 60-min U-net and 60-min persistence model.
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the validation data, is too low for the testing data, yielding an

overall frequency bias of 1.43 (shown in Fig. 13b).

In supplemental Fig. S17 the domain-averaged scores for the

persistencemodel are shown, to be comparedwith Fig. 13 for the

U-net. The U-net clearly outperforms the persistence model in

all facets, especially reliability (Figs. 13a,e,f). Meanwhile, sup-

plemental Fig. S18 shows gridded scores for the two 120-min

models. Overall conclusions, especially the U-net-based clima-

tology beingmore plausible, are the same as for other lead times.

e. Summary of all lead times

Figure 14 summarizes the performance of the U-nets and per-

sistence models versus lead time. Consistent with the foregoing

discussion, Fig. 14 shows that, in terms of all scores except CSI, the

U-net overtakes the persistence model at 60-min lead time and

moredramatically outperforms persistence at lead times. 60min.

f. Case studies

Figures 15–17 show three case studies, each in a different

month of the testing year (2018). Figure 15 shows a winter case,

where there is only one actual thunderstorm, labeled ‘‘A.’’ The

storm is weak, with a small reflectivity core and reflectivity

barely exceeding 45 dBZ (Fig. 15b). The 0-min U-net (Fig. 15a)

estimates probabilities of 0.15–0.20 around storm A and

probabilities , 0.05 everywhere else, indicating good dis-

crimination. U-nets at nonzero lead times (left column)

FIG. 13. Domain-averaged scores for selected 120-min U-net. Formatting is explained in the caption of Fig. 7. (g),(h) For scores based on

binary forecasts (frequency bias and CSI), we use a probability threshold of 0.15, corresponding to the star in (b).
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forecast probabilities ,0.05 everywhere, so do not provide

good discrimination. The persistence models (right column)

also forecast probabilities,0.05 everywhere, except the 30- and

90-min persistencemodels forecast high probabilities near storm

A. Locations where the 30- and 90-min persistence models

forecast nonzero probabilities, are locations where storms ex-

isted 30 and 90min before the valid time, respectively. By visual

inspection, we have found that both of these storms are earlier

snapshots of storm A. Also by visual inspection, storm A exists

at 60 and 120min before the valid time; however, it does not

meet the SL3D criteria and is therefore labeled nonconvective,

so the 60- and 120-min persistence models forecast zero every-

where. Such imperfections in the SL3D labels affect both the

U-nets and persistence models, but they affect the persistence

models more strongly. A persistence model initialized at t0 must

use the SL3D labels at t0, while a U-net draws from its experi-

ence over the entire training set and therefore can partly over-

come incorrect labels. In general, because winter thunderstorms

are marginal (‘‘barely convective’’), they are difficult for both

the U-nets and persistence models to forecast.

Figure 16 shows a June case, with four thunderstorms around

the southern radar (Fig. 16b). The 0-minU-net (Fig. 16a) estimates

probabilities .0.75 around storm A, .0.5 around storm B, up to

0.5 around storm C, and up to 0.25 around storm D. Almost ev-

erywhere else, the 0-minU-net has probabilities,0.05. Thus, as in

Fig. 15, the 0-min U-net has good discrimination. At nonzero lead

times (Figs. 16c–j), there are two main differences between the

U-nets and persistence models. First, the U-nets generally make

better predictions for storms C and D, especially at 30-min lead

time, where the persistencemodel has only zeros around C andD.

This is a case of convective initiation, which the U-net forecasts

with probabilities up to 0.2 around storm C and 0.1 around storm

D. At lead times beyond 30min, the U-nets also outperform the

persistencemodels in this area,with the persistencemodelsmissing

the initiation of D and missing the location of C. Second, both

the U-nets and persistence models produce false alarms

southwest of Taiwan, but the U-nets’ false alarms cover a

larger area.

Figure 17 shows anAugust case, during the passage of Tropical

Depression Luis. The strongest convection (according to com-

posite reflectivity; Fig. 17b) occurs in two areas, labeled A and B.

The 0-min U-net (Fig. 17a) estimates high probabilities in both

areas, but some high probabilities are false alarms, like those in

area C. However, note that composite reflectivity . 35 dBZ

(often used as the definition of convection; section 1) in most of

areaC. Thus, the discrepancy between the 0-minU-net and SL3D

labels here is probably related to the subjectivity of defining

convection, as well as the difficulty of making a radar-based and

satellite-based definition agree. The 0-min U-net also has a large

area of false negatives on the east side of Luis, where convection is

weaker and appears to be embedded in an area of stratiform rain.

As the lead time increases, U-net probabilities (left column) lose

sharpness, with themaximumprobability decreasing from;1.0 at

0-min lead time to ;0.5 at 120-min lead time. The persistence

models (right column) do not lose sharpness as lead time in-

creases, but their high probabilities are generally misplaced. This

is especially true at 120min, where the U-net probabilities are

highest in areas A and B (Fig. 17i), while the persistence-model

probabilities are highest in areaD, which ismostly nonconvective.

Also, the strong convection in area A is completely missed by the

persistencemodel. This problemcould potentially be alleviated by

storm-tracking—i.e., extrapolating storm locations into the future,

rather than assuming no movement—as the rainbands corre-

sponding to area A exist at 120min before the valid time.

However, this would be a difficult tracking problem. Individual

storm cells in the rainband mostly do not last for 120min, and

nearly all tracking algorithms focus on individual cells. A multi-

scale tracking algorithm would be needed, capable of tracking

features such as storm cells, rainbands, and possibly entire cy-

clones. Reasoning with features at multiple scales is already a

strength of the U-net (section 3a), which is likely why it so dra-

matically outperforms the persistencemodel at 120-min lead time.

6. Model interpretation

The permutation test measures the importance of each pre-

dictor xj by measuring how much the performance of a trained

model declines when xj is permuted—i.e., randomly shuffled

across data examples, so that maps of xj are spatiotemporally

intact but assigned to the wrong examples. In this case we mea-

sure the importance of eachHimawari-8 spectral band, averaged

FIG. 14. Summarized performance of U-nets and persistence

models vs lead time. For each score, the line shows the mean, and

the shaded area shows the 95% confidence interval, determined by

bootstrapping with 1000 replicates. We do not show a 0-min per-

sistence model, because a 0-min persistence model would have

perfect performance (BSS 5 FSS 5 CSI 5 1) by definition. For

each model F , we have used the best probability threshold, pre-

viously determined on validation data, to compute CSI.

DECEMBER 2021 LAGERQU I S T ET AL . 3915

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/13/24 07:59 PM UTC



over the other dimensions, which are lag times and grid points.

We run the permutation test on 30 randomly selected days from

the testing set, using the same loss function as during training

(FSSwith awindowof 93 9 grid points).We run all four versions

of the test—single-pass forward, multipass forward, single-pass

backward, and multipass backward—for the U-net at each lead

time. The four versions handle correlated predictors differently,

so it is useful to run all four and look for consistent results. See

McGovern et al. (2019) for details on the permutation test.

Results for the 0-min U-net are shown in Fig. 18; results for

other lead times, which are similar, are shown in supplemental

Figs. S19–S22. In each panel of these figures, predictor importance

increases toward the top. For the 0-min U-net—ignoring the

multipass backward test, forwhichmost results are not statistically

significant—band 13 is themost important for all three tests, while

band 11 is second-most important for two tests and third-most

important for one test. Considering all lead times, bands 11, 13,

and 16 appear most often with statistical significance in the top

three predictors. As shown in Fig. 1 of Da (2015), weighting

functions for these bands peak in the lower troposphere, while

those for bands 8–10 peak in the middle to upper troposphere.

Thus, themost important information for forecasting convection

is in the lower troposphere. If the task were instead strong

convection (i.e., thunderstorms with deep updrafts), we suspect

that bands 8–10 would be more important, as in Molina et al.

(2021), who found that midlevel fields are more important for

strong thunderstorms than for weak thunderstorms.

7. Summary and future work

We applied U-nets, a type of deep-learning model, to

forecast convection around Taiwan at lead times up to 120min.

The predictors are a time series of ‘‘brightness-temperature

images’’ from the Himawari-8 satellite, and the labels are

a binary convection mask, produced by applying an echo-

classification algorithm called SL3D to radar data. We

experimented with three U-net architectures: vanilla, tem-

poral, and U-net11. We found that the vanilla architecture

performs best, based on multiple scores. At each lead time

(0, 30, 60, 90, and 120 min) we tuned other hyperparameters,

including the lag times for predictors. The best model at

each lead time uses predictors at two or more lag times,

indicating that the time series is important. Also, the per-

mutation test indicates that spectral bands weighted toward

the lower troposphere are more important predictors than

those weighted toward the middle to upper troposphere. Our

novel contributions include 1) applying U-nets to forecast

convection; 2) experimenting with novel U-net architectures

FIG. 15. Convection probabilities valid at 2230UTC 25 Jan 2018

(0630 TST 26 Jan 2018). In all panels, black dots show actual

convection at 2230 UTC, according to SL3D. Black dots are not

 
shown outside the 100-km range rings (gray circles), because

SL3D labels here are ignored. The letter label (‘‘A’’) is explained

in the main text. (a) Estimated probabilities from 0-min U-net.

(b) Composite reflectivity at 2230 UTC. (c)–(j) Forecast proba-

bilities at nonzero lead times from both U-nets and persistence

models. All forecasts are valid at the same time (2230UTC), so an

N-min forecast was initialized at N min before 2230 UTC.
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FIG. 16. Convection probabilities valid at 1920 UTC 3 Jun 2018

(0320 TST 4 Jun 2018). Letter labels (‘‘A’’–‘‘D’’) are explained in the

main text. Other formatting is explained in the caption of Fig. 15.

FIG. 17. Convection probabilities valid at 0830 UTC 23 Aug 2018

(1630 TST 23 Aug 2018). Letter labels (A to D) are explained in the

main text. Other formatting is explained in the caption of Fig. 15.
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for atmospheric science; 3) using a spatially aware evaluation

score (FSS) as the loss function, not only for post hoc evalua-

tion; 4) the sliding-window approach, wherein we train on

patches of the Himawari-8 domain with adequate radar data,

then apply the trained models to the full domain.

For the 60-min lead time, we expanded the hyper-

parameter experiment documented in the supplemental

material, training 180 vanilla U-nets with a pixelwise loss

function instead of FSS. Namely, we used pixelwise cross-

entropy, which is a common choice for binary classification.

We found that the best U-net trained with pixelwise cross-

entropy has a similar performance diagram, but much worse

attributes diagram, than the best U-net trained with FSS

(supplemental Fig. S23). Specifically, the best U-net trained

with pixelwise cross-entropy is extremely overconfident

when forecasting any probability * 0.3.

For model evaluation during and after training, we used

neighborhood-based scores, with a neighborhood radius of 0.058,
to avoid problems such as the double penalty. We compared

theU-net at each nonzero lead time to a persistencemodel at the

same lead time. We found that the U-net is worse than the

persistence model at 30-min lead time, slightly better at 60min,

and markedly better at 601 min. To our knowledge, two pre-

vious works have developed convection-forecasting algorithms

FIG. 18. Results of permutation test for 0-minU-net. The value for the bar labeled ‘‘xj’’ has a differentmeaning in

each panel: (a) the loss (1 2 FSS) with only predictor xj permuted; (b) the loss with xj and all predictors above

permuted; (c) the loss with only xj in the correct order and all other predictors permuted; (d) the loss with xj and all

predictors above in the correct order. The diagonal gray line is the original loss, with all predictors in the correct

order. If xj is in boldface font, it is significantly more important (at the 95% confidence level) than the predictor

below it, based on a paired-bootstrapping test with 1000 iterations. Orange error bars show the 95% confidence

interval, also based on bootstrapping with 1000 iterations.
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for theHimawari-8 (Lee et al. 2017; Han et al. 2019). Although

they achieve better evaluation scores, we cannot directly com-

pare our results with theirs, because (i) they forecast convective

initiation only; (ii) they forecast over South Korea rather than

Taiwan; (iii) they use different evaluation methods, including

an object-oriented, rather than gridded, approach; (iv) they use

much smaller testing sets, i.e., less than 10 days.

Future work will investigate season-specific models, espe-

cially for improving the prediction of marginal convection in

the winter. There are many fewer storms in the winter, which

may lead to problems with sample size, so the winter model will

likely be trained with examples from all seasons but using the

‘‘statistical weighting’’ scheme in Burke et al. (2021), where

winter (summer) examples have the highest (lowest) weight.

Also, future work will incorporate other predictors, such as

NWP output and mesoanalysis based on in situ observations.

We believe that this is the main avenue for improvement, as

these data indicate how conducive the environment is to non-

linear processes such as convective initiation and decay.
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